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Abstract—Approximate analytical solutions are obtained for the equations of radiative transfer in

spherical and infinite cylindrical light-scattering media with uniformly distributed radiation sources. Use

is made of the source function preliminarily found to Eddington’s approximation and of a number of

mathematical simplifications, whose error is estimated by direct numerical calculations. The expressions

for emissivities of the cylindrical and spherical media are analyzed depending on scattering properties
of the medium and experimental conditions.

NOMENCLATURE
I, = I(t,.8, ), radiation intensity at point 7
and in the direction |1 = (8, ¢);
2
B, = B‘(T) — _i__(ehv/kT_l)—l,

Planck radiation intensity for frequency
v and temperature T;

1
J, =J@) = —f I(z, 0, @) dQ,
47[ (@n)
mean radiation intensity;
S, = S(1), radiation source function;

&F(z,)(or &,(t,, p)), total (or directional) emissivity
of a plane layer; u = cos6;

e"(z,)(or &(1,, 1)), total (or directional) emissivity
of an infinite cylindrical medium;

ef(t,)( or e(t,, 1)), total (or directional) emissivity

of a spherical medium;

absorption and scattering indices,

respectively;

o = K+ g, attenuation index of a medium;

x and o,

A =—0—, probability of quantum survival (or the
Schuster number);

0 < r <R, cylinder or sphere radius;

0 < 1+ar < 1,=aR, optical thickness of a
cylinder or sphere along the radius;

n, external normal to the boundary surface;

L(x), Bessel functions of the nth order
imaginary argument.

- 1. INTRODUCTION

RADIATIVE heat transfer plays an important role in
studying physical characteristics of different power
plants (high-temperature chemical reactors, metallur-
gical furnaces, boilers, etc.). The necessity to solve
problems on radiative heat transfer arises also in
atmospheric optics concerned with re-entry of space
vehicles where radiation may not be neglected. At
present operating temperature levels of power plants
are increasing, that gives rise to specific requirements
to precise theoretical and experimental methods for

radiative heat transfer, especially those concerned with
radiative and temperature fields inside the media con-
sidered since physical and chemical processes may
greatly depend on radiation and temperature distribu-
tion in a medium. The improvement of the methods is
primarily concerned with the study both of physical
(in particular, optical) constants of the media used in
power plants and of thermophysical and optical char-
acteristics of the boundary surfaces. On the other hand,
it is necessary to search for new methods and improve
the available ones used for calculating radiative energy
transfer. If radiation propagation in a medium is
accompanied by multiple scattering processes, then
great mathematical difficulties appear when solving
radiative heat-transfer problems. Numerous studies
show [1-3] that in some cases scattering processes
play a very essential role for studying radiative prop-
erties of furnace media. It is natural since in modern
power plants usually a “gas—solid particle” system
serves as a heat transfer agent. More often the simplest
model (that of a plane layer) is used for radiative
properties of light-scattering media. The real geometry
of furnace media is however more close to the axi-
symmetric model. Some problems of radiative energy
transfer in spherically symmetric media are solved by
the Monte Carlo method [4-6] or by their reduction
to integral equations with subsequent numerical cal-
culation [7-9].

Problems on luminescence of light-scattering media
may be of independent interest, e.g. for spectroscopy
of flames, thermal atmospheric regime, radiative fields
around space apparatuses, regimes in combustion
chambers of engines, etc. More often these problems
are a part of more complex ones on radiative gas
dynamics. So the study of radiative characteristics of
supersonic two-phase flows sometimes requires simul-
taneous solution of gas dynamic and integrodifferential
equations for radiative transfer [4]. In thermal engin-
eering problems simultaneous consideration should be
made of radiative, convective and conductive heat
transfer [1-3]. Since such problems are very com-
plicated, the necessity arises to develop correct and
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convenient methods for determining emissivities of
light-scattering non-plane media.

Radiative characteristics of light-scattering media of
cylindrical and spherical geometries with uniformly
distributed radiation sources are found and analyzed
here. The method proposed is based on solving the
radiative transfer equation involving the source func-
tion, whose approximate form is preliminarily found.
For convenience of their use and physical illustration
the final results are simplified by approximate relations,
whose accuracy is confirmed by direct numerical
calculations.

2. SOURCE FUNCTIONS FOR CYLINDER AND SPHERE
TO EDDINGTON’S APPROXIMATION

The authors [11] showed that radiative character-
istics of a plane light-scattering layer of a finite optical
thickness may be calculated with great accuracy in
terms of the source function preliminarily calculated
to Schwarzschield-Schuster’s approximation. To deter-
mine emissivities of cylindrical and spherical light-
scattering media, first of all, the expressions for the
source functions should be found to Eddington’s
approximation [12-14].

Let a cylindrical or spherical medium with a radius
R be characterized by some attenuation index a =k +0.
In the subsequent calculations, the indicatrix of radi-
ation scattering is assumed to be spherical on the
volume element of the medium under consideration.
To account for non-sphericity of the scattering in-
dicatrix in multiple processes of scattering, it is possible
to introduce the following scattering function [11]:

P, ) = a+2(1—a)d(u—u’), 1

which reduces the initial equation to the radiative
transfer one with a spherical indicatrix of scattering
but with a new value of the scattering index ¢’ = ao.

The equations for radiative transfer in infinitely
cylindrical and spherical light-scattering homogeneous
media are of the form, respectively [15]:

. o1(z, 0, p)
sin § cos ¢p ————
0t
in @si 1
— w(t—’g’ﬁ_}_l(r, 6’ (P) = S(‘L’), (2)
T op
ol(z, 0 in6 ol(t, 0
p2le9) _sinbol0) o0 5w, )
0t T 00
where

2n n
S(t)= —%—f d(pj I(t,0, )sin 0d0+S,(tr) (4)
4n o 0
is the source function due to scattering processes and
intrinsic radiation of the medium. Figure 1 shows a
coordinate system in the cases considered; provided
local thermodynamic equilibrium (LTE), the function
S,(7) is defined by:
Se(t) =(1—-24)B. (&)

With no outside radiation onto the medium under
consideration, the boundary condition for equations
(2) and (3) is given by:

I(To s l)(ln) <0 = 0. (6)
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F1G. 1. Choice of a coordinate system.

As is shown in [12-14] provided LTE, the equation
for radiative transfer in infinite cylindrical and spherical
media may be reduced by Eddington’s approximation
to the following one for mean radiation intensity:

AJ(r) = k*[J(z) - B]. 7
Here
o2 1 d 190 0
AS = — z
o tor 1 61( (%) ®
for an infinite cylindrical medium and
2 20 10 0
AN=—st——
e Te P < 61) ®
for a spherically symmetric medium,
k2 =3(1-2). (10)

The boundary condition for equation (7) to Edding-
ton’s approximation may be written as:

40

= —3J().
el 3J(z,)

11

The solution of problems (7)-(11) lead to the follow-
ing relations for a mean intensity of radiation propa-
gating in cylindrical and spherical light-scattering
media, respectively:

Jz) = B[1 - AL{kv)],
50 = B<1_Cto§inhkr>, (12)
tsinh kz,
where
A™" = I(kt,) + 4L (ke,),
(13)

1 +e 2k
el (R B e
Hence, the unknown source functions are found for
light-scattering cylinder and sphere, respectively:

S.(t) = AJ(t)+ (1 —A)B = B[1 - 14 (k7)], (14)
7,8inh kt
S,(‘L’)= B(l*iCm) (15)

Substitution of equations (14) and (15) into equations
(2) and (3), respectively, and variables of the type
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v=rcos¢@ and w=tsing result in the following
solution of the problem stated:

2 ~1*sin? p]+tcos g
sinf

1
B J{t.6,0¢)=1~— exp(

~Mexp(-—w°s <p)

sin 8

TGOS @
X J Lik/[x*+1*sin? ¢])
wJ(1d —?sin® o}

X ex ( x ) dx
P\Gng)sin0’

ACt,
sinhkz,

J‘ T sinh(k /[x*+ 1% —1%u*])

X ;

Jld =143 \/(x2 +12 ety

x exp{x—tydx. (17}
Note that the expression for the radiation intensity

in a cylindrical medium at sin 8 = 0 (radiation propa-

gates along the cylinder axis) may be obtained directly

from equation (2): I, = S(1).

(16)

%Js(ﬁ W =1—exp{—tp—f[2~2+2u])~

3. EMISSIVITY OF INFINITE CYLINDRICAL
LIGHT-SCATTERING MEDIUM

From expression (16) emissivity of a c¢ylindrical
light-scattering medium may be easily found

6= 8(t0, 0, 0) = —;;zcm, 6,9) = 1~e~2—2ad,¥, (18)

where
I RSP Ilikro)’
sinfé Lkz,) 19
Y Lkr,+/[x* cos? @ +sin? ¢])
Yo e™dx.
-1 Io(k"':o)

Relation (18} at 4 = 1 (pure scattering medium) and
at 4 =10 (no light-scattering) is consistent with the
physical meaning of the problem studied. However, it
is very difficult to study luminescence characteristics
of a cylindrical medium by the above relation. Such
investigation becomes even more complicated due to
the necessity to integrate expression (18) with respect
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to the angle ¢ since in many cases of practical im-
portance the distance from a cylinder to the receiver
is much greater than its diameter. Note that on
physical grounds integration with respect to ¢ from
—7/2 to /2 answers summation of cylinder radiation
in a certain direction (Fig. 1). For integration of
intensity of emerging radiation with respect to ¢ use
is made of the approximate equality which is strictly
valid for propagation of diffusional radiation [15] in
the plane light-scattering layer

1
j J(zo, wydp 2 (15, 1),

[

(20)

This equality also holds for emissivity of a plane
light-scattering layer of a finite optical thickness [11].
‘The validity of this condition is also confirmed by direct
numerical integration of the W-function with respect
to @. Therefore, for the W-function integrated with
respect to ¢, it may be written:

i
[ Wit,, 0, Wdp =
o
_ f Likr,-3/[3+x%%])

-1 L(kto)

To obtain the final expression for emissivity of a
cylindrical medium, use is made of the following
approximate relations:

e™dx. 21)

M > e Hl=aNke for 085 <a<gl,
Likt;) )
ﬁgicl g . ~x/d
L(x} ~ ’

J’l expf —a{l —x)(1+bx)]dx
1

= 1 (1
a
Direct calculations of relations (22) and (23} verify their
validity. So, Table 1 contains calculation results on
relation (22). The error of relations (22) is seen to be
< 10 per cent. As the error signs are different, the
above error may be diminished when calculating the
final expressions.

_ 2ab
3a+2b

){1 ~e ) for 003 (23

Table 1. Calculation from approximate relations (16) (ex. and app. are exact and approximate functions)

LiixyL(x) L(ax)/1(x}

x o= 0-85 o =090 & = 095
ex. app. ex. app. ex. app. ex. app.
05 0243 0221 098 (93 099 095 099 098
10 0447 -394 094 087 096 891 098 095
15 0-595 0-528 088 081 092 087 096 093
20 0695 0632 082 076 087 083 093 091
25 0765 0714 076 071 0-83 079 091 088
30 0810 6777 070 0-66 079 075 089 087
40 0-861 O-865 060 057 o 0-68 084 082
60 0911 0950 044 044 0-58 0-57 076 075
80 0934 0982 033 033 047 047 069 068
100 950 0993 024 025 039 039 062 061
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Thus, for the emissivity of an infinite cylindrical
light-scattering medium we have

1 kT,
jk‘t,,é e

. l-———= ){1-e 9

. ( 3kr,,+62)(1 © )

¢ =¢(1,,0)

=l-e 0 : =, (24)
(1+Zsin0>[1+§k(l—e 2 )]
where
ksin 6
5=——sl:—“——, k=JB30-2. 5
1+Zsin0

Figures 2 and 3 show angular distribution of radi-
ation intensity emitted by an infinite cylindrical light-
scattering medium at different values of probability of
quantum survival 4 and optical radius ¢, = (x+0)R.
For comparison the emissivity of a plane layer with
the similar optical properties but at t, = 27, is pre-
sented in these figures, from which it is seen that the
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Fi1G. 3. Angular distribution of emissivities of cylindrical &
(solid curves) and plane ¢, (dotted curves) light-scattering
media a,t, = 5; b, 7, = 15.
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To

FI1G. 4. Plot of total (¢f) and normal (¢¥) emissivities

of a cylindrical medium vs optical thickness; dashed

line, emissivity of a plane layer (t, = 27,) 1, A = 0-3;
2,A=05;31=08;4,1=095

strongest difference in the nature of angular distribution
is observed for weakly scattering media of small optical
thicknesses. The emissivity of a light-scattering cylinder
increases with the optical thickness slower than in the
case of a plane layer (Fig. 4). Attention should be paid
to the upper part of Figure 4 where are presented the
calculations from relation (18) (solid curves) atsin = 4
and emissivities of a plane layer (dotted curves) [11]:

_ T 2
=1- sinf __
8,,(‘[0, 0) € 1+ ka + (1 _ko)e—Zkoro

2k, T
1—e sinf
X - +
[ 1+2k,sinf

e—Zk,,T,,

—e sind
1—2k,siné ]’

k, = /(1 A). (26)
The values of the total emissivity of a plane layer[11]:
— a— 2keto 1 _ k
Fz)=(1-R)—————, R = d
&,(1,) =(1-R) 1 +Re %’ Tk, (27)

are denoted by circles in Fig. 4. Good agreement
between the quantities £X(z,) and &,(z,, 7/6) confirms
the reliability of the accepted condition for intensity
averaging over the angle for radiating light-scattering
media. This agreement also implies that the data on
a light-scattering cylinder at 8 = n/6 depicted in Fig. 4
may be taken as its total emissivity given by:

ef(r,)=1—e %%

2k, (8 + k) ~2 @+
gAl1l———2 "~ _|[1l—-e ¢
[ 16k+3r,,(8+k)2:|[ € ]

13

38+K)2[3+2k(1—e 2 )]

(28)
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In case of infinitely thick optical medium, equation
(26) is substituted by

4)(12+ksin 6)
(+2k)@+ksin 0y

&(1,,0) =1

To—

(29)

Table 2 shows that the calculations from the above
expression agree with emissivities of a semi-infinite
layer calculated with a spherical scattering indicatrix
on a volume element of a substance, i.e. ata=1[11]:

1+2siné

o 0 =
ot )| T2 Ji-hsme

V=2, (30)

Table 2 contains the values of total emissivities of a
semi-infinite layer and a cylinder

. N
80(10) tosr 0 - 1+\/(1—}.)
and (31
N IR 7 L)
AL B_2)B+k)?

It should be noted that it is more correct to compare
emissivities of a layer ¢, and a sphere e due to physical
essence of the choice of the coordinate system (Fig. 1).

With the known values of &(z,, §) and £”(z,) it is not
difficult to determine directional and total intensity of
radiation emitted by a light-scattering cylinder

I(1,,6) = £(z,, 0)nRB, L(1,) = $e*(z,)nRB. (32)

To study the effect of experimental conditions on the
value of luminescence intensity of a light-scattering
cylinder, expression (18) is numerically calculated
depending on angles O and C, ie. with different
directions of observation. Moreover, the calculation
made is also important to check relations (24) and (28)
which determine directional and total emissivities of a
cylindrical medium. The effect of experimental condi-
tions on the emissivity of a light-scattering cylinder is
shown in Fig. 5 where the increase in the angle ¢ con-
siderably changes the emissivity of a cylinder at 6 ~ 90°,
i.e. when radiation is observed in the directions close
to the normal to the lateral cylinder surface. As should
be expected, at # — 0° (or 8 — 180°) emissivity does not
depend any more on the angle ¢. As the optical radius
increases, the emissivity tends to a certain limit, the
value and rate of approaching the limit being deter-
mined both by optical characteristics of the medium
considered and by experimental conditions, i.e. by the
angles 6 and ¢.

Note that with no radiation (A = 0) the values of
total emissivity of a cylindrical medium coincide with
those of work [2] within 7 per cent over the whole
range of the optical thickness.

4. ANALYSIS OF LUMINESCENCE CHARACTERISTICS
OF LIGHT-SCATTERING SPHERE

According to (17) directional emissivity of a light-
scattering sphere is equal to:

e(t,, ) = ]lgls(fo, p) =1—e ¥*—ACF(t,,4) (33)
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o sinh(k/[x?+t2—1,4%])
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90°

30°

o°

FiG. 5. Angular distribution of radiation of a light-scattering cylindrical medium at different angles ¢ 1, ¢ = 0°;
2,p=30%3,¢=60° —,A=0;—-, A =015~ =05, —x—x—=09.

Since determination of total emissivity of a light-
scattering sphere requires integration over the angle,
more convenient representation of function (34) should
be found. So, see Table 3.

1 _e-—2r.,u
Flt,, p) = (3%)

pkt,
1+
3k+1,

and emissivities of a semi-infinite layer from (20)
presented in Table 2 show that the extreme case
1, — 00 of relation (36) is physically valid.

Use of expression (36) and proposed condition of
averaging diffusively propagating radiation over the
angle (equation (20)) yields total and normal emiss-
ivities of a light-scattering medium

appears to be the simplest representation. eN=e(,,p)| =0 —e‘2‘°)[1 _ Bk ) ], (38)
With regard for expression (35) the emissivity of a u=1 3k+(1+k)t,
light-scattering sphere in some direction is given by: 20C(3k+1,)
efr)=(1—e ™) 1-=——-1. (39
AC 6k+(2+k)z,
et p)=(1—e-2en) g~ (36)
1+ Rk, Figure 6 shows a plot of normal and total emissivities
The functions 3k+1, of a spherical light-scattering medium versus optical
2 radius 1, = (k+0)R as well as values of emissivity of
e(u) = e(t,, ) =1-———"—— (37) a plane layer of optical thickness 1, =27, (dotted
To = 0 (1 + %k)(l +H'k) curvcs)‘
Table 3. Values of functions (34) (ex.) and (35) (app.)
01 03 05 07 09
T, 0'/A ex. app. ex. app. ex. app. ex. app. eX. app.
15° 1-75 1-70 1-75 1-70 1-75 170 176 1-71 176 171
30° 1-59 1-55 1-59 1-55 1-59 1-55 1-59 1-55 1-59 1-55
01 45° 1-32 1-29 1-32 1-29 1-32 129 1-32 1-29 132 1-29
60° 1-95 194 1-95 194 1-95 194 1-95 194 1-95 1-94
75° 0-50 0-50 0-50 0-50 0-50 050 0-50 0-50 0-50 0-50
15 068 068 071 068 075 068 079 069 083 071
30° 068 066 071 067 074 067 077 068 080 070
1-0 45° 067 0-63 0-68 064 0:70 0-64 072 0-64 074 0-66
60° 059 0-56 0-60 0-56 0-61 056 062 0-56 063 0-57
75° 040 038 040 038 0-40 038 040 0-38 0-40 0-38
15° 027 034 030 034 033 0-35 038 036 045 0-38
30° 030 034 0-32 035 035 0-35 039 036 045 0-38
20 45° 0-33 0-35 035 0-36 0-38 0-36 0-41 0-37 045 039
60° 036 0-35 037 0-35 0-39 036 040 036 0-42 0-38
75° 031 029 0-31 0-29 0-31 029 032 029 032 0-30
155 0040 0048 0044 0051 0048 0054 0055 0058 0070 0069
30° 0-043 0051 0-047 0-053 0051 0056 0058 0061 0-073 0-071
100 45° 0049 0-056 0-052 0-058 0057 0061 0064 0-066 0077 0-075
60° 0-059 0-065 0-063 0-066 0067 0-069 0073 0-073 0-084 0-081
75° 0078 0077 0081 0079 0083 0081 0087 0-083 0-093 0-089
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F1G. 6. Plot of normal {¢") and total (¢”) emissivities

of a spherical medium vs optical radius 7, = (k +0)R;

dashed line, emissivity of a plane layer (r, = 21,)
1,A=03;2,1=05;3,1=08;4,1=095

For calculation of radiation intensity of a light-
scattering sphere use should be made of the following
relations:

I(Tu’ #) = e(ro’ #)Ba I(To) = %nRz CF(T,,)B. (40)

Note that with no regard for scattering, according
to equations (26), (28) and (39), relations of total
emissivities of a layer, cylinder and sphere may be
written as:

eF(r): eF (1,): eF (1) = (1 —e7%%): (1—e~%%): (1 —e™ ™)

where 1, = 21,=2xR. The calculations from this re-
lation agree satisfactorily with the available reported
values {2].

5. CONCLUSION

The relations proposed for emissivities of cylindrical
and spherical light-scattering media are very simple
and may therefore be used to solve problems on
radiative gas dynamics and combined heat transfer.
The method used in this paper which is essentially
an iteration procedure based on preliminary deter-
mination of the source function when used for solving
the equation of radiative transfer with uniformly dis-
tributed radiation sources for a plane layer is very
accurate. Due to the assumptions accepted the error
of the method increases for a light-scattering cylinder
and sphere. It is difficult to estimate the value of this
error because of no necessary data. The physical
correctness of the results obtained is confirmed by
considering the extreme cases (pure radiating media,
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comparison of the results with regard for light scatter-
ing with large optical thicknesses, etc.). The errors of
the method may approximately be estimated by com-
paring the values obtained with the exact ones. The
analysis made shows that for a cylindrical medium
the errors of calculation of emissivity in the most un-
favourable situations is about 20 per cent. For spherical
media the error of the method may be estimated by
comparing expressions (34) and (35), see Table 3. On
the other hand, as is seen from the dependences of
emissivities of light-scattering cylinder and sphere upon
optical properties of a medium and experimental con-
ditions, use of the plane layer approximation for real
light-scattering cylindrical or spherical objects may
result in the error which grows with an increase of
the light-scattering contribution in the media under
investigation.
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CARACTERISTIQUES DE LA LUMINESCENCE DES MILIEUX DIFFUSIFS
CYLINDRIQUES ET SPHERIQUES

Résumé—Des solutions analytiques approchées sont obtenues pour les équations du transfert par
rayonnement dans les milieux diffusifs sphériques et cylindriques infinis avec des sources de rayonnement
unifomément réparties. On utilise Ia fonction source introduite en premier lieu dans I'approximation de
Eddington et un certain nombre de simplifications mathématiques dont I'erreur qu'elles entrainent est
estimée directement par le calcul numérique. Les expressions du pouvoir émissif des milieux cylindriques
et sphériques sont analysées en fonction des propriétés diffusives du milieu et des conditions expérimentales.

STRAHLUNGSVERHALTEN ZYLINDRISCHER UND SPHARISCHER
LICHTSTREUENDER MEDIEN

Zusammenfassung—Es werden analytische NaherungslGsungen fiir die Warmetibertragung durch

Strahlung in sphérischen und durch unendlich lange Zylinder gebildeten lichtstreuenden Medien mit

gleichmdBig verteilten Strahlungsquellen angegeben. Es wird dabei von der (vor der Niherungsldsung

von Eddington gefundenen) Quellen-Funktion und von einigen mathematischen Vereinfachungen

Gebrauch gemacht, deren Fehler mittels direkter numerischer Rechnung abgeschatzt wird. Die Ausdriicke

fur Emissionskoeffizienten der sphirischen und zylindrischen Medien werden beziiglich der Streueigen-
schaften des Mediums und der experimentellen Bedingungen untersucht.

XAPAKTEPUCTUKH CBEYEHHWS UWJIMHAPUYECKUX
N COEPUYECKHMX CBETOPACCEMBAIOLIUX CPE[

Annoramia — J{ns ypaBHEHHI IEPEHOCA H3TyYeHHs B chepHYECKO# M GeCKOHEUHOH HMTMHAPHYECKOH

CBETOPACCCHBAIOUIMX CPEAAX C PABHOMEPHO PACIpPENC/ICHHBIMH HCTOYHHKAMH H3ITyYeHHS [OTyYeHbl

NpHGAMKEHHbIE aHATTHTHYeCKHE pemmenus. [IpH HX NOJTy4eHHH HCNONL30BaHA (GYHKLHS HCTOMHHKOB,

TIpSABAPHTENLHO Hal AeHHAS B IPUOIMkeHHH DIIMHITOHA, A TAKXKE DA MATEMATHYECKHX YIPOLIECHHH,

NIOTPEIIHOCTE KOTOPBIX OLEHEHA HEMOCPENCTBEHHbIMHM YHCJIEHHBIMH pacueTaMH. BbipaxeHHs ans

H3JTYYATENbHBIX CIOCOGHOCTER HMIMHIPHYECKHX H CHEPHYECKHX Cpel IPOaHATH3HPOBAHEI B 3aBUCH-~
MOCTH OT PAacCeMBAIOLINX CBOKCTB Cpe/ibl H YCIOBHM MPOBEAEHHSA SKCIEPHMEHTOB.



