
ht. J. Heor Mass Transfer. Vol. 18, pp, 1131-1138. Pcrgamon Press 1975. Printed in Gnat Britain 

LUMINESCENCE CHARACTERISTICS OF CYLINDRICAL 
AND SPHERICAL LIGHT-SCATTERING MEDIA 
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Abstract-Approximate analytical solutions are obtained for the equations of radiative transfer in 
spherical and infinite cylindrical light-scattering media with uniformly distributed radiation sources. Use 
is made of the source function preliminarily found to Eddington’s approximation and of a number of 
mathematical simplifications, whose error is estimated by direct numerical calculations. The expressions 
for emissivities of the cylindrical and spherical media are analyzed depending on scattering properties 

of the medium and experimental conditions. 

I, 

B, 

NOMENCLATURE 

= I(r.0, cp), radiation intensity at point 7 

and in the direction I = I(& cp); 

= B,.(T) = $f(ehvjkT- I)-‘, 

Planck radiation intensity for frequency 
v and temperature T; 

J, = J(7) = & 
s 

I(7,& cp) dn, 

(4n) 

mean radiation intensity; 

s, = S(7), radiation source function; 
.$(r,)(or q,(7,, p)), total (or directional) emissivity 

of a plane layer; p = cos 0; 
sF(z,)(or E(T., p)), total (or directional) emissivity 

of an infinite cylindrical medium; 
eF(t,)( or e(t,, p)), total (or directional) emissivity 

of a spherical medium; 
rcando, absorption and scattering indices, 

respectively; 
6: = ~+a, attenuation index of a medium; 

J=d probability of quantum survival (or the 
‘+” Schuster number); 

0 < r < R, cylinder or sphere radius; 
O<t+ar<7,=o?R, optical thickness of a 

cylinder or sphere along the radius; 

n, external normal to the boundary surface; 

1” (X)> Bessel functions of the nth order 
imaginary argument. 

1. INTRODUCTION 

RADIATIVE heat transfer plays an important role in 
studying physical characteristics of different power 
plants (high-temperature chemical reactors, metallur- 
gical furnaces, boilers, etc.). The necessity to solve 
problems on radiative heat transfer arises also in 
atmospheric optics concerned with re-entry of space 
vehicles where radiation may not be neglected. At 
present operating temperature levels of power plants 
are increasing, that gives rise to specific requirements 
to precise theoretical and experimental methods for 

radiative heat transfer, especially those concerned with 
radiative and temperature fields inside the media con- 
sidered since physical and chemical processes may 
greatly depend on radiation and temperature distribu- 
tion in a medium. The improvement of the methods is 
primarily concerned with the study both of physical 
(in particular, optical) constants of the media used in 
power plants and of thermophysical and optical char- 
acteristics of the boundary surfaces. On the other hand, 
it is necessary to search for new methods and improve 
the available ones used for calculating radiative energy 
transfer. If radiation propagation in a medium is 
accompanied by multiple scattering processes, then 
great mathematical difficulties appear when solving 
radiative heat-transfer problems. Numerous studies 
show [l-3] that in some cases scattering processes 
play a very essential role for studying radiative prop 
erties of furnace media. It is natural since in modem 
power plants usually a “gas-solid particle” system 
serves as a heat transfeS agent. More often the simplest 
model (that of a plane layer) is used for radiative 
properties of light-scattering media. The real geometry 
of furnace media is however more close to the axi- 
symmetric model. Some problems of radiative energy 
transfer in spherically symmetric media are solved by 
the Monte Carlo method [4-6] or by their reduction 
to integral equations with subsequent numerical cal- 
culation [7-g]. 

Problems on luminescence of light-scattering media 
may be of independent interest, e.g. for spectroscopy 
of flames, thermal atmospheric regime, radiative fields 
around space apparatuses, regimes in combustion 
chambers of engines, etc. More often these problems 
are a part of more complex ones on radiative gas 
dynamics. So the study of radiative characteristics of 
supersonic two-phase flows sometimes requires simul- 
taneous solution of gas dynamic and integrodifferential 
equations for radiative transfer [4]. In thermal engin- 
eering problems simultaneous consideration should be 
made of radiative, convective and conductive heat 
transfer [l-3]. Since such problems are very com- 
plicated, the necessity arises to develop correct and 
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convenient methods for determining emissivities of 
light-scattering non-plane media. 

Radiative characteristics of light-scattering media of 
cylindrical and spherical geometries with uniformly 
distributed radiation sources are found and analyzed 
here. The method proposed is based on solving the 
radiative transfer equation involving the source func- 
tion, whose approximate form is preliminarily found. 
For convenience of their use and physical illustration 
the final results are simplified by approximate relations, 
whose accuracy is confirmed by direct numerical 
calculations. 

2. SOURCE FUNCTIONS FOR CYLINDER AND SPHERE 
TO EDDINGTON’S APPROXIMATION 

FIG. 1. Choice of a coordinate system. 

The authors [ll] showed that radiative character- 
istics of a plane light-scattering layer of a finite optical 

As is shown in [12-141 provided LTE, the equation 

thickness may be calculated with great accuracy in 
for radiative transfer in infinite cylindrical and spherical 

terms of the source function preliminarily calculated 
media may be reduced by Eddington’s approximation 

to Schwarzschield-Schuster’s approximation. To deter- 
to the following one for mean radiation intensity: 

mine emissivities of cylindrical and spherical light- AJ(t) = k’[J(r) -B]. (7) 
scattering media, first of all, the expressions for the 
source functions should be found to Eddington’s 

Here 

approximation [ 12-141. 
Let a cylindrical or spherical medium with a radius 

R be characterized by some attenuation index CI = K + 6. 

In the subsequent calculations, the indicatrix of radi- for an infinite cylindrical medium and 
ation scattering is assumed to be spherical on the 
volume element of the medium under consideration. 
To account for non-sphericity of the scattering in- 
dicatrix in multiple processes of scattering, it is possible 
to introduce the following scattering function [ 1 l] : 

for a spherically symmetric medium, 

PkP’) = a+W-aV(~-p’), (1) k2 = 3(1--n). (10) 

which reduces the initial equation to the radiative 
transfer one with a spherical indicatrix of scattering 

The boundary condition for equation (7) to Edding- 

but with a new value of the scattering index o’ = aa. 
ton’s approximation may be written as: 

The equations for radiative transfer in infinitely dJ(r) 
cylindrical and spherical light-scattering homogeneous d7 r=ro 

= -:J(z,). (11) 

media are of the form, respectively [ 151: 

ark 8, d 
sinOcos(D---- 

The solution of problems (7)-(11) lead to the follow- 

dt ing relations for a mean intensity of radiation propa- 

sin 0 sin 41 I(T, 0, cp) 
gating in cylindrical and spherical light-scattering 

- ~ acp + I(z, 0, cp) = S(t), (2) media, respectively : 
r 

cos e 81(7,0) sin f3 aI(z, 19) J,(z) = B[l -Al(kz)], 
--- ~ + I(~, e) = ~(~1, 

at t ae (3) 

where J&)= B 
T,, sinh kt 

l-C= 
> 

(12) 
1 

0 

S(r) = $- 

2n 

s s 
dq ’ z(t, 8, cp) sin 0 d0 + s,(t) (4) where 

0 0 A- I = I,(kz,) + $1, (kz,), 

is the source function due to scattering processes and 
(13) intrinsic radiation of the medium. Figure 1 shows a 

coordinate system in the cases considered; provided 
local thermodynamic equilibrium (LTE), the function Hence, the unknown source functions are found for 

S,(T) is defined by : light-scattering cylinder and sphere, respectively: 

S,(r) = (1-1)B. (5) S,(r) = I.J,(r)+(l-I)B = B[l-IA&(k (14) 

With no outside radiation onto the medium under 
consideration, the boundary condition for equations &(z)=B ( MC= . 

0 ) (15) 
(2) and (3) is given by: 

Substitution ofequations (14) and (15) into equations 
4% 9 U(ln) < 0 = 0. (6) (2) and (3), respectively, and variables of the type 



8 = z cos cp and w = ~sin cp result in the following 
solution of the problem stated : 

;J&,e,q+ I-exp 
i 

JE -r2sin2~]+tcoscp 
- 

sin 0 > 

-.L&exp -s 
! 1 

x exp _x 
( 1 

dx f16) -- 
Sl?l@ sin@’ 

&A, $&(7&i) = 1-exp~-?~-Jfz,2-r~SzZyJ3--- 
sinh kz, 

J w 
x 

si~h~~~[~*~~~-72~*]~ 

-.Jr:-r’+r$J’l J(xZ+.rZ--?j&2) 
x exp(x-zp)&. (I?) 

Note that the expression for the radiatiun intensity 
in a cylindrical medium at sin 8 L= 0 [radiation propa- 
gates along the cylinder axis) may be obtained directly 
from equation (2): 1, = $(r}. 

3. ~MI~IV~ OF INANE ~~~~~~AL 
LIGHT-SCATTERING MEDIUM 

From expression (16) emissivity of a cylindrical 
~~t-sc~tte~ng medium may be easily found 

e = E(T,, @,ul) = 

where 

Relation (18) at 1= 1 (pure scattering rn~~~) and 
at I = 0 (no ~~t~s~tte~g) is consistent with the 
physical meaning of the problem studied. However, it 
is very di&ult to study luminescence characteristics 
of a ~~nd~~al medium by the above relation. Such 
investigation becomes even more complicated due to 
the necessity to integrate expression (18) with respect 

to the angle cp since in many case4 of practical im- 
portance the distance from a cylinder to the receiver 
is much greater than its diameter. Note that on 
physical grounds inntegration with respect to cc0 from 
-$? to ,zj2 answers station of cylinder radiation 
in a certain direction (Fig. 1). For integration of 
intensity of emerging radiation with respect to 40 use 
is made of the approximate equality which is strictly 
valid for propagation of di~ional radiation ClS] in 
the plane ~~t-~atteri~~ layer 

J 
1 4~ It)% z 4tor $1. WI 
0 

This equality also holds for emissivity of a plane 
light-scattering layer of a finite optical thicknms [ 1 I]. 
The validity of this condition is also confirmed by direct 
numerical integration of the Y-function with respect 
to rp. Therefore, for the Y-function integrated with 
respect to 9, it may be written: 

J 
1 ‘yk,, 4 ct)dp z 0 

To obtain the final expression for e~~i~ty of a 
cylindrical medium, use is made of the following 
approximate relations: 

+-&) (1 -e-“) for 0 $ b G 03. (23) 

Direct calculations of relations (22) and (23) verify their 
validity. So, Table 1 contains calculation results on 
relation (22). The error of relations (22) is seen to be 
S 10 per cent. As the error signs are ~ffer~t, the 
above error may be ~rni~sh~ when cakulating the 
final expressions. 

Table 1. Calculation from approximate relations (16) (ex. and app. are exact and approximate functions) 

&fW&44 MaxMx) 

X a = 0‘85 cW=O+Ml tl = 0.95 

ex. aw ex. WP ex. a&V* ex. am. 

0.5 5243 0221 
I.0 0447 0.394 
1.5 0.595 OC%8 
2.0 0.695 5632 
2.5 0.765 @714 
30 0.810 0.777 
4.0 5861 5865 
6.0 0.911 *9so 
8.0 0934 0982 

10.0 0.950 0.993 

0.98 593 0.99 0.95 0.99 0.98 
0.94 0.87 0.96 591 598 595 
0.88 581 0.92 587 593 
582 576 0.87 0.83 

E! 
591 

0.76 571 cl.83 579 0.91 588 
0.70 566 0.79 0.75 0.89 0.87 

:z 557 044 0.71 558 568 557 584 0.76 O+g2 575 
533 0.33 047 547 0.69 568 
0.24 525 0.39 0.39 562 0.61 
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Thus, for the emissivity of an infinite cylindrical 
light-scattering medium we have 

where 

6= 
ksin8 

k = J[3(1 -I)]. (25) 

Figures 2 and 3 show angular distribution of radi- 
ation intensity emitted by an infinite cylindrical light- 
scattering medium at different values of probability of 
quantum survival 1 and optical radius r, = (rc+a)R. 
For comparison the emissivity of a plane layer with 
the similar optical properties but at rb = 22, is pre- 
sented in these figures, from which it is seen that the 

0 02 04 06 08 0 02 04 06 0s IO 

E. .E 

FIG. 2. Angular distribution of emissivities of cylindrical E 
(solid curves) and plane a, (dotted curves) light-scattered 
mediaa,~,=0~5;b,r,=2~0;1,I=0~3;2,1=0~5;3,1=0~8; 

4, I = 0.95. 

0.6 
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0.2 
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0.2 

6, .E 

0 

FIG. 3. Angular distribution of emissivities of cylindrical E 
(solid curves) and plane E, (dotted curves) light-scattering 

media u, r0 = 5; b, 5. = 15. 

eF 
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eN 

-.i 

__---- 

04 

0.2 

0 
5 10 

FIG. 4. Plot of total (Ed) and normal (aN) emissivities 
of a cylindrical medium vs optical thickness; dashed 
line, emissivity of a plane layer (rb = 2r,) 1, I = 0.3; 

2, 1, = 0.5; 3, I = 0.8 ; 4, I = 0.95. 

strongest difference in the nature of angular distribution 
is observed for weakly scattering media of small optical 
thicknesses. The emissivity of a light-scattering cylinder 
increases with the optical thickness slower than in the 
case of a plane layer (Fig. 4). Attention should be paid 
to the upper part of Figure 4 where are presented the 
calculations from relation (18) (solid curves) at sin 6 = 1 
and emissivities of a plane layer (dotted curves) [ 111: 

r. 

E~(T~,~?)= l-e sine- 
II 

1+k,+(1-k,)e-2’o’0 
-&-2k.r. -2L 

1-e WI0 
X 

1+2k,sinO 

+e-2k.T. _ e sin.G 

1 1-2k,sinO ’ 
k, = J(l-I). (26) 

The values of the total emissivity of a plane layer [ 111: 
l_e-Zk.‘o 

E,F(T,)=(1--R)1+Re-2~O~OI R=l+k 1-ko (27) 
0 

are denoted by circles in Fig. 4. Good agreement 
between the quantities E%(TJ and E,(T,, n/6) confirms 
the reliability of the accepted condition for intensity 
averaging over the angle for radiating light-scattering 
media. This agreement also implies that the data on 
a fight-scattering cylinder at 0 = n/6 depicted in Fig. 4 
may be taken as its total emissivity given by: 

~~(7~) = 1 -e-“o 

1 k 

-;(S+k) 
P-e 1 

(28) 



Luminescence characteristics of light-scattering media 

In case of infinitely thick optical medium, equation 
(26) is substituted by 

1135 

s(70, e) =I- 
41(12 + k sin 19) 

(3+2k)(4+ksinf?)2’ 
(29) 

r.-m 

Table 2 shows that the calculations from the above 
expression agree with emissivities of a semi-infinite 
layer calculated with a spherical scattering indicatrix 
on a volume element of a substance, i.e. at a E 1 [ 111: 

Kl(70, 4 
1+2sinB 

= 1+2J(l-1)sinB 
J(1 - 1). (30) 

To-+cc 

Table 2 contains the values of total emissivities of a 
semi-infinite layer and a cylinder 

470) 
2J(l -A) 

to-cc = 1+&1-A) 
and (31) 

EF(7.) 

81(24 + k) 

L,-+m = ' - (3-2k)(8 + k)’ * 

It should be noted that it is more correct to compare 
emissivities of a layer E, and a sphere e due to physical 
essence of the choice of the coordinate system (Fig. 1). 

With the known values of s(7,, 0) and ~~(7,) it is not 
dithcult to determine directional and total intensity of 
radiation emitted by a light-scattering cylinder 

1,(7,,e) = &(7,,B)7cRB, 1,(7J= f&F(7,)7m?. (32) 

To study the effect of experimental conditions on the 
value of luminescence intensity of a light-scattering 
cylinder, expression (18) is numerically calculated 
depending on angles 0 and C, i.e. with different 
directions of observation. Moreover, the calculation 
made is also important to check relations (24) and (28) 
which determine directional and total emissivities of a 
cylindrical medium. The effect of experimental condi- 
tions on the emissivity of a light-scattering cylinder is 
shown in Fig. 5 where the increase in the angle cp con- 
siderably changes the emissivity of a cylinder at 0 N 90”, 
i.e. when radiation is observed in the directions close 
to the normal to the lateral cylinder surface. As should 
be expected, at 0 -+ 0” (or f3 + 180”) emissivity does not 
depend any more on the angle cp. As the optical radius 
increases, the emissivity tends to a certain limit, the 
value and rate of approaching the limit being deter- 
mined both by optical characteristics of the medium 
considered and by experimental conditions, i.e. by the 
angles e and cp. 

Note that with no radiation (A= 0) the values of 
total emissivity of a cylindrical medium coincide with 
those of work [2] within 7 per cent over the whole 
range of the optical thickness. 

4. ANALYSIS OF LUMINESCENCE CHARACTRRISTICS 
OF LIGHT-SCATTERING SPHERE 

According to (17) directional emissivity of a light- 
scattering sphere is equal to: 

e(z,,p) = $ZS(7.,p) = 1-e-2’~“-LCF(7,,~) (33) 

F(7mP) =* 
W' sinh(k J[x’+7f - r,p']) 

0 s 
_ 

COP ??+7~-7,p2 

x e-"o"-"'dx, 

(34) 
p=cosfY, w=F-e. 

D 
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90” 900 

A 
60’ 

900 

5. Angular distribution of radiation of a light-scattering cylindrical medium at different angles cp 1, cp = 0”; 
~,~~3~“;3,~~~~“;~-,~~0;----,~~~~~;- ._._ c&5;-_x-_x--0.9. 

Since determination of total emissivity of a light- 
scattering sphere requires integration over the angle, 
more convenient representation of function (34) should 
be found. So, see Table 3. 

F(7,, p) Z l -e;fh” . (35) 
If2 

3k+t, 

appears to be the simplest representation. 
With regard for expression (35) the emissivity of a 

light-scattering sphere in some direction is given by: 

e(7,,~)=(l-e-2r01~) 

The functions 

(36) 

4.4 = eh, ~1 =I- 
I 

ro-+m (1 ++k)(l +ti) (37) 

and emissivities of a semi-infinite layer from (20) 
presented in Table 2 show that the extreme case 
7, + 00 of relation (36) is physically valid. 

Use of expression (36) and proposed condition of 
averaging diffusively propagating radiation over the 
angle (equation (20)) yields total and normal emiss- 
ivities of a light-scattering medium 

I_ ,wk+7J 
3k+(l +k)z, 1 ’ 

(38) 

21C(3k + 7.,) 1 6k+(2+k)z, ’ 
(39) 

Figure 6 shows a plot of normal and total emissivities 
of a spherical light-scattering medium versus optical 
radius 7, = (~+cr)R as well as values of emissivity of 
a plane layer of optical thickness 7: = 27, (dotted 
curves). 

Table 3. Values of functions (34) (ex.) and (35) (app.) 

70 

0.1 0.3 0.5 0.7 0.9 

@/I ex. app. ex. app. ex. app. ex. app. ex. app. 

15” 
30 

0.1 45” 
60 
75” 

15” 
30” 

1.0 45” 
60” 
75” 
15” 
30” 

2.0 45” 
60” 
75” 
15” 
30” 

10.0 45” 
60” 
15” 

1.75 
1.59 
1.32 
1.95 
0.50 

068 
0.68 
067 
0.59 
0.40 

0.27 
030 
0.33 
0.36 
0.31 

0.040 
0.043 
0049 
0.059 
0.078 

1.70 1.75 1.70 
1.55 1.59 1.55 
1.29 1.32 1.29 
1.94 1.95 1.94 
050 0.50 0.50 

0.68 0.71 0.68 
0.66 0.71 0.67 
0.63 @68 064 
0.56 0.60 0.56 
0.38 0.40 0.38 

0.34 0.30 034 
0.34 0.32 @35 
0.35 0.35 0.36 
0.35 0.37 0.35 
0.29 0.31 D29 

0048 0044 0.051 
0.05 1 oa47 0.053 
0.056 DO52 0.058 
0.065 0.063 0.066 
0.077 0.081 0.079 

1.75 
1.59 
1.32 
1.95 
0.50 

@75 
0.74 
0.70 
0.61 
0.40 

033 
0.35 
0.38 
0.39 
0.31 

a051 
0.057 
0.067 
0.083 

1.70 1.76 1.71 
1.55 1.59 1.55 
1.29 1.32 1.29 
1.94 1.95 1.94 
0.50 0.50 0.50 

068 0.79 0.69 
0.67 0.77 0.68 
064 0.72 064 
0.56 0.62 0.56 
0.38 0.40 0.38 

0.35 0.38 0.36 
0.35 0.39 0.36 
0.36 0.41 0.37 
0.36 0.40 0.36 
0.29 0.32 0.29 

0.054 0,055 0.058 
0.056 0058 0061 
0.061 0064 0.066 
0.069 0.073 a073 
0.08 1 0,087 0.083 

1.76 
1.59 
1.32 
1.95 
0.50 

0.83 
0.80 
0.74 
0.63 
0.40 

1.71 
1.55 
1.29 
1.94 
0.50 

0.71 
0.70 
0.66 
0.57 
0.38 

0.45 0.38 
045 0.38 
0.45 0.39 
0.42 0.38 
0.32 0.30 

0.069 
0.07 1 
0.075 
0.08 1 
0.089 
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0,2 

FIG. 6. Plot of normal (eN) and total (8) emissivities 
of a spherical medium vs optical radius 2, = (K + a)R; 
dashed line, emissivity of a plane layer (rb = 27,) 

1, A = 0.3; 2,1 = 0.5; 3, rl = 0.8; 4, I = 0.95. 

For calculation of radiation intensity of a light- 
scattering sphere use should be made of the following 
relations : 

Z(70, R) = e(7,, R)B, Z(7,) = $tRzeF(7,)B. (40) 

Note that with no regard for scattering, according 
to equations (26), (28) and (39), relations of total 
emissivities of a layer, cylinder and sphere may be 
written as : 

e,F(7:): ~~(7~): er(7J = (1 -e-4’“): (1 -e-“0): (1 -emr”) 

where 7: = 27,=2~R. The calculations from this re- 
lation agree satisfactorily with the available reported 
values [2]. 

5. CONCLUSION 

The relations proposed for emissivities of cylindrical 
and spherical light-scattering media are very simple 
and may therefore be used to solve problems on 
radiative gas dynamics and combined heat transfer. 
The method used in this paper which is essentially 
an iteration procedure based on preliminary deter- 
mination of the source function when used for solving 
the equation of radiative transfer with uniformly dis- 
tributed radiation sources for a plane layer is very 
accurate. Due to the assumptions accepted the error 
of the method increases for a light-scattering cylinder 
and sphere. It is difficult to estimate the value of this 
error because of no necessary data. The physical 
correctness of the results obtained is confirmed by 
considering the extreme cases (pure radiating media, 

comparison of the results with regard for light scatter- 
ing with large optical thicknesses, etc.). The errors of 
the method may approximately be estimated by com- 
paring the values obtained with the exact ones. The 
analysis made shows that for a cylindrical medium 
the errors of calculation of emissivity in the most un- 
favourable situations is about 20 per cent. For spherical 
media the error of the method may be estimated by 
comparing expressions (34) and (35), see Table 3. On 
the other hand, as is seen from the dependences of 
emissivities oflight-scattering cylinder and sphere upon 
optical properties of a medium and experimental con- 
ditions, use of the plane layer approximation for real 
light-scattering cylindrical or spherical objects may 
result in the error which grows with an increase of 
the light-scattering contribution in the media under 
investigation. 
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CARACTERISTIQUES DE LA LUMINESCENCE DES MILIEUX DIFFUSIFS 
CYLINDRIQUES ET SPHERIQUES 

R&sum&-Des solutions analytiques approchees sont obtenues pour les equations du transfert par 
rayonnement dans les milieux diffusifs spheriques et cylindriques infinis avec des sources de rayonnement 
unifomement repparties. On utilise la fonction source introduite en premier lieu darts l’approximation de 
Eddington et un certain nombre de simplifications mathtmatiques dont I’erreur qu’elles entrainent est 
estimee directement par le calcul numerique. Les expressions du pouvoir emissif des milieux cylindriques 
et sphtriques sont analys&es en fonction des proprietes diffusives du milieu et des conditions experimentales. 

STRAHLUNGSVERHALTEN ZYLINDRISCHER UND SPHARISCHER 
LICHTSTREUENDER MEDIEN 

Zusammenfassung-Es werden analytische Naherungslosungen fur die Warmeiibertragung durch 
Strahlung in sphtiischen und durch unendhch lange Zyhnder gebildeten lichtstreuenden Medien mit 
gleichmiigig verteilten Strahlungsquellen angegeben. Es wird dabei von der (vor der NPherungsliisung 
von Eddington gefundenen) Quellen-Funktion und von einigen mathematischen Vereinfachungen 
Gebrauch gemacht, deren Fehler mittels direkter numerischer Rechnung abgeschltzt wird. Die Ausdriicke 
fur Emissionskoeffizienten der spharischen und zylindrischen Medien werden beziiglich der Streueigen- 

schaften des Mediums und der experimentellen Bedingungen untersucht. 

XAPAKTEPMCTHKH CBE’IEHHJI I@UIMHAPHYECKWX 
II C@EPWHECKAX CBETOPACCEMBAIGIIHiX CPEA 

AH8OTlllVlff - &IX ypaBHeHHfi IlepeHOGi HWIy’ieHHa B C&!pHWcKOtt Ii 6eCKOHeqHOi-i l@fJlHHApHWCKOfi 
cneropacceaeatoqax cpenax c paetiosfeprto pacnpenenetiubtMH K~osHHK~MH Klnyrewir nonywiu 
npw6JIHxeHHbre aHa.wTHwcKHe perueHH% HpH HX nonyveHwH Hcnonb3oBaHa @YHKWR HCTOSHHKOB, 

npCA~pwTeAbHOHa~AeHHKKB npri6nmxeeriri 3LZ4WH~OHa,KTaK~epKAMaTeMaTHY~KHX ,‘llpOUeHHti, 

IIOQWIlHOCTb KOTOpbIX 04CHeIia HellOC~ACTBeHHbIMK YHCfleHHbIMH pi%YieTaMH. BblpmKeHHK AJIK 

H3Ay~aTCAbHbIXCn~O6H~Te8~~A~HApH~eCKKXHC~PHS~KHXC~A~pOaHaAH3HpOBaHbIB JBBHCH- 

MOCTW OT paCCWiFJZlWIAHX CBOtiCTB CpeAblH )WIOBHfi IIpOBeAeHHK 3KCIIePHMeHTOB. 


